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Abstract — Capacitive couplings between orthogorsafly crossed, galvani-

cally separated transmission lines are analyzed using the “method of

lines.” The static capacitances of typicaf stripline configurations are cafcu-

Iated. Charge density distributions occurring when two paraflel striplines

are crossed by a third are deseribed.

I. INTRODUCTION

I N DIGITAL integrated circuits, interconnection lines

on different dielectric layers frequently cross orthogo-

nally. Couplings between these galvanically separated

transmission lines are therefore predominantly capacitive. ”

In MMIC’S such stripline crossings are used as air bridges

or underpasses; e.g. for spiral inductors and directional

couplers.

Although multiconductor crossings occur in many cir-

cuits, little has been reported on the characteristics of such

complex structures. A static spectral-domain approach is

used in [1] for calculating the coupling capacitances of air

bridges and underpasses. A full-wave analysis for deter-

mining the equivalent circuit parameters of a single,

stripline crossing is shown in [2]. However, this method,

which is based on the generalized “transverse resonance

technique,” is rather cumbersome for configurations with

more than four ports. In many cases simple parallel-plate

estimations of the coupling capacitances are used for CAD

purposes. Because of the large extent of the coupling field,

such models cannot provide sufficiently accurate network

parameters.

This paper describes a field-theory-based method of

calculating the lumped capacitances of crossed planar mul-

ticonductor systems. An equivalent circuit representation

is derived for a single stripline crossing, and tbe static

capacitances are compared with the corresponding capaci-

tances given in [2] at the frequency ~ = 2.0 GHz. Charge

density distributions are presented for an underpass, con-

sisting of two strips crossed orthogonally by a third one.

Finally, a capacitance matrix for an arrangement of three

coupled stripline crossings is given.
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Fig. 1. Top and cross-sectionaf views of two orthogonally crossed pla-

nar multiconductor systems at differen{ dielectric interfaces; d’ and cL

denote the thickness ‘md the permittivi’ty of the kth layer; the ‘width ~

the j th stripline at interface A (If) and the width of the spacing that

follows are given by w~(~), and s~(~) j+ ~, respectively; 1~(~) is the
length of the striplines at interface A (B). The structure is bounded by
magnetic and electric walls (m./el.w.).

H. ANALYSIS

We consider the potential function rp(x, y, z), which

must satisfy Laplace’s differential equation Arp = O in the

different regions @ to @) of Fig. 1. Dirichlet’s and

Neumann’s conditions hold at the electric and magnetic

walls. For solving this boundary value problem using the

method of lines, the differential quotients with respect to x

and y in Laplace’s differential equation are replaced by

finite difference expressions.

A typical pattern for discretization of a stripline crossing

is illustrated in Fig. 2. The lines of discretization run

parallel to the z axis and are marked by “+” and “““ in

the x – y plane. The potential fUnCtiOII T (Xi> Y~, z ) = ~i, k

and the second derivatives qXX(xi, ~k, z) and Tyy(xi, yk> z)

are evaluated at the line (xi, y~, 2), marked by “+” in the

detail. The first derivatives are related to locations between

the potential lines; i.e., %( y~, z) Ii is evaluated at @ and

9Y(~i, Z) I k is deterfied at location @. The mixed

derivative rpXY(z ) Ii, k is calculated at on~e of the corners of

the rectangukir mesh of the area eXi X eY& If we assign this

mesh to its central line, where qi ,Lis evaluated, the follow-

ing simple geometrical interpreta~ion holds: each line (i, k),

marked by” + ,“ has its “own” mesh of hrea eXi X eY~. The

corners of these meshes, marked by “•,” represent the

central lines of another, shifted net with meshes of area

hxi x hyk.

In the present method of analysis the potential function

is discretized with respect to x and y; i.e., the differential
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Fig. 2. Top view of a stripline crossing. The lines of discretization for the potentiaf function and the second derivatives are

marked in the x – y plane by “ + .“ The first derivatives % 1, and WVIk are evaluated at the locations @ and @. as is

indicated in the detail. The mixed first derivative Q.,, 1, ~ is calculated at the corner of the mesh of area e,, X evk: h., ~d

h ,,k denote the widths of the shifted mesh.
. . .. ,., ,.

quotients for these variables are approximated by finite

difference expressions [3]. If we define the first-order oper-

ator with respect to x by [~X] = [rhX][DX][reX], where [DX]

denotes a bidiagonal difference operator [4], the following

approximate relation for the matrix of the Mx x My sec-

ond derivatives holds:

h2[r,x]-’[qxx][ r,y]-1=h2[Qxx]

=-[ Dx]f[Dx][@]

=[zml. (1)

The elements of the matrix [0] represent the normalized

potentials [0],, ~ = [p],, ~\(~~J~).

In accordance with [3], the intermediate transformation,

called normalization, is performed by diagonal matrices. In

the special case of equidistant discretization, the four
matrices of different order [ reX(ey)] = diag (~=) and

[rhx(hyj] = diw(~=), which depend on the mesh

widths eX,, ey~ and hXl, h ~~, equal the corresponding unity
matrices.

A finite difference approximation similar to (1) can be

given for the second derivatives with respect to y. How-
ever, for the position of [ cp],,~ in matrix [~] to equal the

position of the corresponding marking “+” in the dis-

cretization pattern, we must interchange the matrices of

potential and operator [fiYY]. Laplace’s differential equa-

tion is solved at the Mx x My nodes of the net marked by

“ + .“ For the normalized potential the following approxi-

mate equation holds:

with the real, symmetric, and tridiagonal second-order

operators [fiX.] and [~YY].

A twofold discretized function is represented clearly by

a two-dimensional matrix. For the mathematical and com-

putational solution of the boundary value problem, how-

ever, the representation of the discrete potential function

in the form of a vector is more advantageous [5]. Hence,

instead of (2), the following equivalent equation is solved:

with the vector @ = (@l,. . . , ~~Y)t, whose elements are the
column vectors of the matrix [@].

The second-order op~rators take the form of bloqk ma-

t~ces, defined by [fiXX] = [1] MY@[~X.] and [~vY] =

[~yyl@[~1~., where[1] M,(MX)denotes the unit matrix of
order My(Mx) and the symbol “@” designates a Kro-

necker product (see the Appendix, eq. (Al)).

The potentials [@]l, ~ of (2) are coupled. Decoupling is

achie~ed by a real transformation of the operators [~XX]

and [DYY], respectively [3], [4]. By this the operators of (3)

are transformed to th~ block diagonal structure of their

eigenvalues; i.e., [~] ‘[fiXX(YY)][~] = – [~X(Y)] 2, with the ma-

trix of eigenvectors [~] = [TY] @[TX], where [TX] and [TY]

are the eigenvector matrices for the operators of (2).

The transformation of (3) yields the following set of

MxMy ordinary differential equations:

(4)

where ~ = [T] ’6(z). The relation [~z/h]2= [~X/h]2+

[~Y/lz]2, which corresponds to the separation equations,

as given with Fourier series expansions, holds for the

eigenvalues. Matching of the fields at the interfaces z = d2
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Fig. 3. Equivalent circuit capacitances C4, ZB ( = ~~ ), and cc versus substrate thickness d for a crossing of two striplines.

(A) and z = O (B) results in the equation [rh,] are variable, they are chosen according to

,_= tion of the field function.

where the [ ~m~] are block diagonal

the varia-

!24“1 A first approximation for an optimal discretization of

(5) the charge density distributions on the strips and the

ill electric field at the interfaces between the strips is given in

[3]. In the outer regions, bounded by the magnetic walls,

matrices of order the potential function varies SIC)WIY.A sufficiently large
MxMJ. The transformed potentials and charges are related

to the corresp~nding vectors in the original-domain by
A+

@A(B) = [~el[n@/t(B) and ~~(B) = [?el–m&> with

[?,] = [rey] 8 [r,X]. After inverse transformation of (5) into

the original domain and after inversion of the reduced

matrix, one obtains the equation

-[~red – Y1rji@..d= [c] dr.d. (6)

The [c],, ~ represent microcapacitances. The macro- or

conductor capacitances are calculated by partitioning [c]

and summing the appropriate terms. This yields

~cond = [Ccmrd]z (7)

with the vector of the charges of the N conducting strips

~cond =(@,” “ “, q @)~ and the corresponding potentials

Z==(rp%.. , rp@)’. The elements of the matriX [CCOfld]

denote total capacitances.

III. COMPUTATION

In some analytical methods special basis functions are

introduced to take account of the singular behavior of the

field at the stripline edges [1], [2]. The present method uses

a different approach to increase the rate of convergence

and thus to save computation time. Since the mesh widths,

given by the four diagonal matrices [r.X], [r,Y] and [rhX],

shift- of the walls is achieved with small compu~ational

effort if the quotients of successive mesh widths AXi(Y~) are

fixed at 2.0.

In order to obtain a coupling model in the form of a

lumped-element equivalent circuj t, the capacitance matrix

of the multiconductor system of IIength 1A ( 1~) at interface

A (B) (cf. Fig. 1) is calculated in the absence of the

striplines at interface B (A). These two matrices represent

the submatrices of the block diagonal capacitance matrix

[CmJ, which consequently does not take account of the
coupling between the two crossecl multiconductor systems.

The lumped capacitances [~,~],, ~ of the equivalent circuit

are derived from the capacitance matrix [Ce~] = [ CCOJ –

[C~UIJ, where [CCO*d](cf. eq. (7)) implies the coupling~f all
striplines. The matrix of the lumped capacitances [ Ce~] is

defined by [~,~]Z,~ = –[C.~]Z,~, if i # k, and

[%J1,l = LJcqll,k.
In the following the bar refers to lumped capacitances

for equivalent circuits.

IV. RESULTS

The crossing of two striplines located at the different

interfaces A and B is characterized by the equivalent

circuit sketched in Fig. 3(a). The diagram represents the

lumped capacitances ~~ and ~B ( = ~~ ) as a function of

the substrate thickness d for different strip widths w. The
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values of capacitance from the transverse resonance analy-

sis of [2] at the frequency f = 2.0 GHz are drawn in for

comparison. Fig. 3(b) shows the coupling capacitance cc

of the crossing, defined in Fig. 3(a). As is seen, at low

frequencies the static equivalent capacitances provide a

fairly accurate description of the stripline coupling.

The static coupling field of unshielded stripline crossings

extends infinitely. In real circuits, however, we have physi-

cal boundaries, so that the electric energy is confined to a

finite region. For a crossing of two striplines the conver-

gen~e of_ the coupling capacitance cc is examined in Fig.

4. cc/ccnlax is represented as a function of the normal-

ized magnetic wall distance I/d for two different electric

wall distances a, normalized to the substrate thickness d.

As is seen, in both cases of a/d the convergence of the

function cc to the final value ~c~= is monotonic. With

an increase in a/d, we must increase l/d to achieve the

given range of accuracy. The final value of a/d= 20 is

given by cc ~= = 0.959 pF. In the case of a/d= 100, a

reduced matrix of order 200 has been inverted to obtain

the final value cc ~= = 1.506 pF.

For calculating the lumped capacitances, four lines of

discretization for the strips in the transverse direction have

been chosen. Doubling this number changes the capaci-

tance cc by less than 0.5 percent.

In Fig. 5, surface charge density distributions at two

cuts are depicted for an underpass consisting of two paral-
lel striplines crossed orthogonally by a third one. Fig. 5(a)

shows the normalized surface charge density at the midline

of the single strip at interface B (cut B – B’) for three

cases of stripline potentials: a) ~ @ = rp@ = q@= + 1 V;

b) q@=q@=+l V, q@=–l V; C) rp@=+l V,

rp@ = – 1 V, rp@ = OV. The markings on the abscissa refer

to the lines of discretization. In Fig. 5(b) the surface charge

densities at the midline of conductor @ at interface A

(cut A – A’) for the three cases of potential a)-c) are

plotted. The charge density distributions of Fig. 5 are quite

similar to those given in [1], except within the crossing

regions. As a consequence of the singular basis functions,

t
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Fig. 5. Normalized charge density distributions of the planar multicon-
ductor system sketched m the figure. For the three different cases of
stnpline potentials a)–c), Fig. 5(a) shows the distributions at the cut
B – B’ and Fig. 5(b) gives the charge densities at the cut A – A’ for the

same structure.

the charge density distributions of [1] exhibit depressions,

which dlo not exist physically.

For an arrangement of three parallel strips at interface

B crossed by a single conductor, the matrix of the lumped

capacitances [ ~e~] has been calculated. The structure is

defined by C,l = C,T= 1.0, C,3 = 9.8 and has the dimensions

(mm) dl = 15.0, dz = 0.05, dq = 0.635, Wm = 0.15, s~z =

0.1, w~z = 0.25, SB3= 0.15, WB3= 0.2, and w~l = 0.15. We

obtain the capacitance matrix (fF)

[

–48.30 19.04 19.77 23.0

[1C&= 19.04 – 7.28 –2.54 –0.59
19.77 – 2.54 – 4.04 1–2.59 “

23.0 –0.59 –2.59 –8.26

As is given with the single crossing (Fig. 3), the coupling

capacitances for striplines of different interfaces are posi-

tive.

V. CONCLUSIONS

A method for the static analysis of crossed planar multi-

conductor systems is presented. It is shown that for low

frequencies the static equivalent circuit describes the

stripline crossing fairly accurately. The capacitance matrix

and different charge density distributions are given for

stripline arrangements consisting of three and two cross-

ings, respectively.
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APPENDIX

Let [A] and [B] be m X n and p X q respectively. Then

the Kronecker product is that

[

all[B]

[/i]@[B]= :

a~l[B]

mp- x nq ma&ix de&ed by

. . . al. [B]

‘1

(Al)

. . . a~.[B] “

[1]

[2]

[3]

[4]

[5]
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