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Coupling of Crossed Planar
- Multiconductor Systems

WERNER VEIT, HEINRICH DIESTEL, ANp REINHOLD PREGLA, SENIOR MEMBER, IEEE

Abstract — Capacitive couplings between orthogonally crossed, galvani-
cally separated transmission lines are analyzed using the “method of
lines.” The static capacitances of typical stripline configurations are calcu-
lated. Charge density distributions occurring when two parallel striplines
are crossed by a third are described.

I. INTRODUCTION

N DIGITAL integrated circuits, interconnection lines
on different dielectric layers frequently cross orthogo-
. nally. Couplings between these galvanically separated

transmission lines are therefore predominantly capacitive.

In MMIC’s such stripline crossings are used as air bridges
or underpasses, e.g. for spiral inductors and directional
couplers.

Although multiconductor crossings occur in many cir-
cuits, little has been reported on the characteristics of such
complex structures. A static spectral-domain approach is
used in [1] for calculating the coupling capacitances of air
bridges and underpasses. A full-wave analysis for deter-
mining the equivalent circuit parameters of a single,
stripline crossing is shown in [2]. However, this: method,
which is based on the generalized “transverse resonance
technique,” is rather cumbersome for configurations with
more than four ports. In many cases simple parallel-plate
estimations of the coupling capacitances are used for CAD
purposes. Because of the large extent of the coupling field,
such models cannot provide sufficiently accurate network
parameters.

This paper describes a field-theory-based method of
calculating the lumped capacitances of crossed planar mul-
ticonductor systems. An equivalent circuit representation
is derived for a single stripline crossing, and the static
capacitances are compared with the corresponding capaci-
tances given in [2] at the frequency f = 2.0 GHz. Charge
density distributions are presented for an underpass, con-
sisting of two strips crossed orthogonally by a third one.
Finally, a capacitance matrix for an arrangement of three
coupled stripline crossings is given.
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Fig. 1. Top and cross-sectional views of two orthogonally crossed pla-
nar multiconductor systems at different dielectric interfaces; d, and ¢,
denote the thickness and the permittivity of the kth layer; the width of
the jth stripline at interface 4 (B) and the width of the spacing that
follows are given by wypy; and Sypy, 115 respectwely, Licpy 1s the
length of the striplines at interface 4 (B): The structure is bounded by
magnetic and electric walls (m./el.w.).

II. ANALYSIS

We consider the potential function ¢(x, y, z), which
must satisfy Laplace’s differential equation Ap =0 in the
different regions (I) to of Fig. 1. Dirichlet’s and
Neumann’s conditions hold at the electric and magnetic
walls. For solving this boundary value problem using the
method of lines, the differential quotients with respect to x
and y in Laplace’s differential equation are replaced by
finite difference expressions. '

"A typical pattern for discretization of a stripline crossing
is illustrated in Fig. 2. The lines of discretization run
parallel to the z axis and are marked by “+” and “®” in
the x—y plane. The potential function @(x,, y;,2) =@; &
and the second derivatives @, (x;, y;, z) and @, (x;, Vio z)
are evaluated at the line (x,, y;, z), marked by “+” in the
detail. The first derivatives are related to locations between
the potential lines; ie., (), z)|; is evaluated at (@) and
¢,(x;, z)|, is determined at location (3). The mixed
derivative ¢, (z)|; ; is calculated at one of the corners of
the rectangular mesh of the area e,; X e ;. If we assign this
mesh to its central line, where ¢, , is evaluated, the follow-
ing simple geometrical interpretation holds: each line (i, k),
marked by “+,” has its “own” mesh of area e, X e, The
corners of these meshes, marked by “e” represent the
central lines of another, shifted net w1th meshes of area
By X by

In the present method of analysis the potential function
is discretized with respect to x and y; i.e., the differential
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Fig. 2. Top view of a stripline crossing. The lines of discretization for the potential function and the second derivatives are

marked in the x—y plane by “+.” The first derivatives ¢ |, and @,|, are evaluated at the locations (@) and

,as is

indicated in the detail. The mixed first derivative ¢, |, , is calculated at the corner of the mesh of area ¢,, X e,;: h,, and

h,, denote the widths of the shifted mesh.

quotients for these variables are approximated by finite
difference expressions [3]. If we define the first-order oper-
ator with respect to x by [D,]=[r,, 1[D,]r..], where [D,]
denotes a bidiagonal difference operator [4], the following
approximate relation for the matrix of the Mx X My sec-
ond derivatives holds:

hz[rex] _1[q)xx][rey] - = h2[®xx]
=-[D]'[D][@]
= [D.][e]. (1)
The elements of the matrix [®] represent the normalized
potentials [®], , =[o], . /(yh /e, Jh/e,.)-
In accordance with [3], the intermediate transformation,

called normalization, is performed by diagonal matrices. In
the special case of equidistant discretization, the four

matrices of different order [7,,,,\] = diag(y/h /e,; ) and

(Zhxcnyy] = diag(Jh /B, k), Which depend on the mesh
widths e, e, and h,, h ,, equal the corresponding unity
matrices.

A finite difference approximation similar to (1) can be
given for the second derivatives with respect to y. How-
ever, for the position of {¢], , in matrix [¢] to equal the
position of the corresponding marking “+” in the dis-
cretization pattern, we must interchange the matrices of
potential and operator [ﬁyy]. Laplace’s differential equa-
tion is solved at the Mx X My nodes of the net marked by
“+.” For the normalized potential the following approxi-
mate equation holds:

Xt

yk>

d? 1 _ _ .1
o]+ [D.]le]+[2][D,] 5 =[0] ()

with the real, symmetric, and tridiagonal second-order
operators [D,,] and [D,,].

A twofold discretized function is represented clearly by
a two-dimensional matrix. For the mathematical and com-
putational solution of the boundary value problem, how-
ever, the representation of the discrete potential function
in the form of a vector is more advantageous [5]. Hence,
instead of (2), the following equivalent equation is solved:

d> ., 172 7.
2;®+_}1—2[DXX](I)+

1
n

(3)

[D,]8=0

with the vector ® = ((fl,- -, ® ,)"> whose elements are the
column vectors of the matrix [®]. ‘

The second-order operators take the form of block ma-
trices, defined by [D,]=[I],,®[D,] and [D,]
[D,,1®[1] 4, where [I],py) denotes the unit matrix of
order My(Mx) and the symbol “®” designates a Kro-
necker product (see the Appendix, eq. (Al)).

The potentials [®], , of (2) are coupled. Decoupling is
achieved by a real transformation of the operators [D,.]
and [D,,], respectively [3], [4]. By this the operators of (3)
are transformed to the block diagonal structure of their
eigenvalues; i.e., [f]’[ﬁxx(yy)][f] = ~[Rx(»y]? with the ma-
trix of eigenvectors [7'] = [7}]®[7,], where [T,] and [T}]
are the eigenvector matrices for the operators of (2).

The transformation of (3) yields the following set of
MxMy ordinary differential equations:

(4)

where @ =[T']'®(z). The relation [§,/h]>=[X,/h]*+
[x,/ h]?, which corresponds to the separation equations,
as given with Fourier series expansions, holds for the
eigenvalues. Matching of the fields at the interfaces z =d,
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Fig. 3. Equivalent circuit capacitances Cy, Cp (= Cy), and C versus substrate thickness d for a crossing of two striplines.

(A4) and z =0 (B) results in the equation

& |_[[f] [Fa]]|da "
3, [Fa] [T 0

where the [T,,] are block diagonal matrices of order
MxMpy. The transformed potentials and charges are related
to the corresponding vectors in the original domain by
Pupy = [fe][f]QA(B) and Gz = [fe]_l[f']QA(B)’ with
[7]=[r,]®][r. ] After inverse transformation of (5) into
the original domain and after inversion of the reduced
matrix, one obtains the equation

(6)

The [c], , represent microcapacitances. The macro- or
conductor capacitances are calculated by partitioning [c]
and summing the appropriate terms. This yields

— -1 —
red = [Y]red(pred - [c](pred'

(7)

with the vector of the charges of the N conducting strips

‘Zcond = [Ccond] ﬁ

Goond = (q@,- -, q@)’ and the corresponding potentials

U= ((p®,- . -,qa@)’. The elements of the matrix [C, 4]
denote total capacitances.

III.

In some analytical methods special basis functions are
introduced to take account of the singular behavior of the
field at the stripline edges [1], [2]. The present method uses
a different approach to increase the rate of convergence
and thus to save computation time. Since the mesh widths,
given by the four diagonal matrices [r,,], [7,,] and [r,,].

COMPUTATION

[r4,] are variable, they are chosen according to the varia-
tion of the field function.

A first approximation for an optimal discretization of
the charge density distributions on the strips and the
electric field at the interfaces between the strips is given in
[3]. In the outer regions, bounded by the magnetic walls,
the potential function varies slowly. A’ sufficiently large
shift of the walls is achieved with small computational
effort if the quotients of successive mesh widths &, ,,, are
fixed at 2.0.

In order to obtain a coupling model in the form of a
lumped-element equivalent circuit, the capacitance matrix
of the multiconductor system of length [, (/) at interface
A (B) (cf. Fig. 1) is calculated in the absence of the
striplines at interface B (A4). These two matrices represent
the submatrices of the block diagonal capacitance matrix
[Cpure]s Which consequently does not take account of the
coupling between the two crossed multiconductor systems.
The lumped capacitances [C, ], , of the equivalent circuit
are derived from the capacitance matrix [C, ] = [C.ong]l —
[Copue)s Where [C, 4] (cf. eq. (7)) implies the coupling of all
striplines. The matrix of the lumped capacitances [C,,] is
defined by [Cel,x = —[Cql,x» if i# k, and
[Ceq]t,t = Z"k[Ceq]z.k'

In the following the bar refers to lumped capacitances
for equivalent circuits.

IV. REsuLTs

The crossing of two striplines located at the different
interfaces 4 and B is characterized by the equivalent
circuit sketched in Fig. 3(a). The diagram represents the
lumped capacitances C, and C (=C,) as a function of
the substrate thickness d for different strip widths w. The



268 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 38, NO. 3, MARCH 1990

100+ e A %
90 b 125%
Ce/m 4
C/Ccmaxso ® WA(B)=W =122 mm
[%] 70+ €1=63=10
60+ &2=9.8
50+ d=0.635 mm I
401 4:'_—‘!
301 @ 2a/g=20 &
| ] 7, L 7€y /:IB
201 @ a/g=100 all  Twhk g
10 1 3
T T T T T T T T T
0 20 40 60 80 100 150 200 250 300
l/d -

Fig. 4. Coupling capacitance C., normalzed to the final value Cp g,
versus 1/d for different values of a /d.

values of capacitance from the transverse resonance analy-
sis of [2] at the frequency f=2.0 GHz are drawn in for
comparison. Fig. 3(b) shows the coupling capacitance C.
of the crossing, defined in Fig. 3(a). As is seen, at low
frequencies the static equivalent capacitances provide a
fairly accurate description of the stripline coupling.

The static coupling field of unshielded stripline crossings
extends infinitely. In real circuits, however, we have physi-
cal boundaries, so that the electric energy is confined to a
finite region. For a crossing of two striplines the conver-
gence of the coupling capacitance C, is examined in Fig.
4. Cp/Ce pax is Tepresented as a function of the normal-
ized magnetic wall distance 1/d for two different electric
wall distances «, normalized to the substrate thickness d.
As is seen, in both cases of a/d the convergence of the
function C, to the final value C,,, is monotonic. With
an increase in a/d, we must increase 1/d to achieve the
given range of accuracy. The final value of a/d =20 is
given by C. .. =0.959 pF. In the case of a/d =100, a
reduced matrix of order 200 has been inverted to obtain
the final value C ,,, =1.506 pF.

For calculating the lumped capacitances, four lines of
discretization for the strips in the transverse direction have
been chosen. Doubling this number changes the capaci-
tance C, by less than 0.5 percent.

In Fig. 5, surface charge density distributions at two
cuts are depicted for an underpass consisting of two paral-
lel striplines crossed orthogonally by a third one. Fig. 5(a)
shows the normalized surface charge density at the midline
of the single strip at interface B (cut B — B’) for three
cases of stripline potentials: a) q)® = <p@ = (p® =+1V;
b) P =@ =41V, ¢@=-1V; ¢) ¢@=+1V,
) O | v, (p® = 0V. The markings on the abscissa refer
to the lines of discretization. In Fig. 5(b) the surface charge
densities at the midline of conductor (2) at interface A
(cut A— A") for the three cases of potential a)-c) are
plotted. The charge density distributions of Fig. 5 are quite
similar to those given in [1], except within the crossing
regions. As a consequence of the singular basis functions,

a) g0-g@-pO=41v
b) gP=g@- 11V, p®@=-1v
c) g@=+1V, p@=-1V, p@-0v

Structure: Fig. 5(b)
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Fig. 5. Normalized charge density distributions of the planar multicon-
ductor system sketched in the figure. For the three different cases of
stripline potentials a)-c), Fig. 5(a) shows the distributions at the cut
B~ B’ and Fig. 5(b) gives the charge densities at the cut A— A’ for the
same structure.

the charge density distributions of [1] exhibit depressions,
which do not exist physically.

For an arrangement of three parallel strips at interface
B crossed by a single conductor, the matrix of the lumped
capacitances [C,] has been calculated. The structure is
defined by ¢,; =¢,, =1.0, ¢,; = 9.8 and has the dimensions
(mm) d, =150, d,=0.05 d;=0.635, wy =015, sp, =
0.1, wg, =0.25, 55, =0.15, wp;=0.2, and w, =0.15. We
obtain the capacitance matrix (fF)

—48.30 19.04 19.77 230

[5 ] _ 19.04 —7.28 —-2.54 -059
« 19.77 —254 —-404 -259
23.0 -0.59 —2.59 —8.26

As is given with the single crossing (Fig. 3), the coupling
capacitances for striplines of different interfaces are posi-
tive.

V. CoONCLUSIONS

A method for the static analysis of crossed planar multi-
conductor systems is presented. It is shown that for low
frequencies the static equivalent circuit describes the
stripline crossing fairly accurately. The capacitance matrix
and different charge density distributions are given for
stripline arrangements consisting of three and two cross-
ings, respectively.
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APPENDIX

Let [4] and [B] be m X n and p X g respectively. Then
the Kronecker product is that mp X ng matrix defined by

ay [ B] a,,[ B]

[4]e[B]=| ; (A1)
@[ B] [ B]
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